The Technological Origins of the Decline in Labor Market Dynamism

Jan Eeckhout¹ Xi Weng²

¹UPF Barcelona ²Beijing University

Fed St. Louis-JEDC-SCG-SNB-Conference October 14, 2023

This research is supported by ERC Advanced grant 882499

- Secular decline in Job Flows UE, EE, EU
- Across states, industry, firm size, firm age, demographics,...
- Potential explanations:
 - 1. Demographics: aging (Fallick e.a., Engbom; partial explan.)
 - 2. Shifting Skill Distribution: but little change since 1990
 - 3. Structural change: but flows services > flows manufacturing;
 - 4. Decline in entrepreneurship: less young firms, why?
 - 5. Policy: employment at will \downarrow , licensing \uparrow (Haltiwanger)
 - $\rightarrow\,$ Hyatt-Speltzer: composition shifts can explain 30%

- Secular decline in Job Flows UE, EE, EU
- Across states, industry, firm size, firm age, demographics,...
- Potential explanations:
 - 1. Demographics: aging (Fallick e.a., Engbom; partial explan.)
 - 2. Shifting Skill Distribution: but little change since 1990
 - 3. Structural change: but flows services > flows manufacturing;
 - 4. Decline in entrepreneurship: less young firms, why?
 - 5. Policy: employment at will \downarrow , licensing \uparrow (Haltiwanger)
 - $\rightarrow\,$ Hyatt-Speltzer: composition shifts can explain 30%
- In this paper, change in the technology?
 - 1. complementarity between skills and job
 - 2. volatility: productivity shocks
 - 3. adjustment costs (search frictions)

- Theory: a model with endogenous UE, EE, EU flows
 - $1. \ \mbox{Two-sided heterogeneity and sorting}$
 - 2. Search intensity determines UE and EE
 - 3. Stochastic productivity: mismatch determines EE and EU
 - $\Rightarrow\,$ Stochastic Sorting with endogenous seperation and search intensity

- Theory: a model with endogenous UE, EE, EU flows
 - 1. Two-sided heterogeneity and sorting
 - 2. Search intensity determines UE and EE
 - 3. Stochastic productivity: mismatch determines EE and EU
 - ⇒ Stochastic Sorting with endogenous seperation and search intensity
- Quantitative Illustration:
 - Effect on flows of change in complementarity, productivity, search frictions
 - Infer technology from flows only

Model

Directed Search, Sorting, OJS

- Continuous time t
- Workers: type $x \in \mathcal{X}$, risk neutral, measure 1
 - 3 states: Unemployed, Employed no search, Employed search
 - wage w, unemployment benefit b(x)
 - Search intensity λ , cost $c_{\lambda}(\lambda)$
- Firms (=jobs): choose type $y \in \mathcal{Y}$ at production cost $c_y(y)$
 - 1. output $f(x, y) c_y(y)$
 - 2. vacancy creation cost: k
 - 3. free entry
- Stochastic types
 - 1. arrival rate of shock γ
 - 2. new types $(x',y') \sim G(x',y'|x,y)$

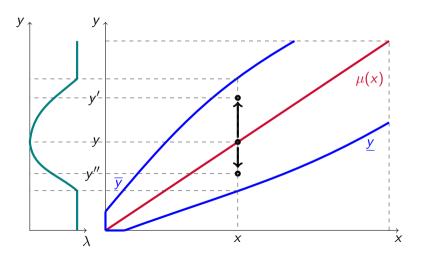
ightarrow in quantitative exercise: x'=x and $y'\sim {\cal G}(y'|x)$

Model

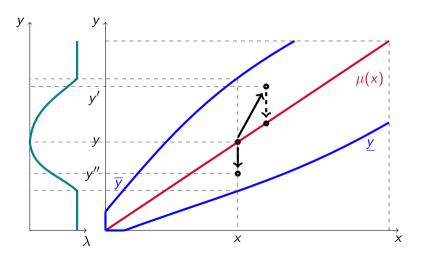
DIRECTED SEARCH, SORTING, OJS

- Market Frictions:
 - 1. Firms post promised utilities (including contingent continuation payoffs)
 - 2. vacancies v(y)
 - 3. efficiency units of unemployed $\Lambda u(x)$ (Λ is aggregate of individual λ)
 - 4. market tightness $\frac{v(y)}{\Lambda u(x)} = \frac{\tilde{\theta}}{\Lambda}$
 - 5. worker's matching rate $\varphi \lambda m\left(\frac{\tilde{\theta}}{\Lambda}\right)$, with $\varphi \in \{\varphi_u, \varphi_e\}$
 - 6. firm's matching rate $q\left(\frac{\tilde{\theta}}{\Lambda}\right) = \varphi m\left(\frac{\tilde{\theta}}{\Lambda}\right) \frac{\Lambda}{\tilde{\theta}}$
- Payoffs and Value functions
 - 1. discount factor $\rho;$ exogenous separation rate $\delta;$ $r=\rho+\delta$
 - 2. transferable utility; U(x), E(x, y), V(y), J(x, y) and S = E + J
 - 3. P(x, y): transfer (penalty) upon separation
- Allocation x to y or unemployed: $\mu \in \mathcal{Y} \cup \{-1\}$

The Mechanism



The Mechanism II



VALUE FUNCTIONS

$$\begin{split} rU(x) = b(x) + \max_{\tilde{y},\tilde{\theta},\Lambda,\lambda} \left\{ \varphi_u \lambda m\left(\frac{\tilde{\theta}}{\Lambda}\right) \left[E(x,\tilde{y}) - U(x)\right] - c_\lambda(\lambda) \right\} \\ rE(x,y) = w(x,y) + \gamma \int \left[\eta E(x',y') + (1-\eta)U(x') - E(x,y)\right] dG(x',y'|x,y) \\ &+ \max_{\tilde{y},\tilde{\theta},\Lambda,\lambda} \left\{ \varphi_e \lambda m\left(\frac{\tilde{\theta}}{\Lambda}\right) \left[E(x,\tilde{y}) - P(x,y) - E(x,y)\right] - c_\lambda(\lambda) \right\} \\ rJ(x,y) = \max_{w,\eta,P} f(x,y) - c_y(y) - w(x,y) + \gamma \int \left[\eta J(x',y') - J(x,y)\right] dG(x',y'|x,y) \\ &+ \varphi_e \lambda^* m\left(\frac{\tilde{\theta}^*}{\Lambda^*}\right) \left(P(x,y) - J(x,y)\right) \\ V(y) = -k + q\left(\frac{\tilde{\theta}}{\Lambda}\right) J(x,y) \end{split}$$

where λ^* , $\tilde{\theta}^*$ and Λ^* are optimal solutions to E(x, y), and where $\eta \in \{0, 1\}$ is the firm's separation decision.

Equilibrium

DEFINITION

A block-recursive equilibrium (BRE) consists of

- a market tightness function $\tilde{\theta} : \mathcal{X} \times \mathcal{Y} \times \Xi \rightarrow \mathbb{R}_+$,
- an aggregate search intensity function $\Lambda: \mathcal{X} \times \mathcal{Y} \times \Xi \to \mathbb{R}_+,$
- an individual search intensity function $\lambda : \mathcal{X} \times \mathcal{Y} \times \Xi \rightarrow \mathbb{R}_+$,
- an allocation function $\mu : \mathcal{X} \times \Xi \rightarrow \mathcal{Y}$,
- value functions $U: \mathcal{X} \to \mathbb{R}$, $E: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, $J: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$, $V: \mathcal{Y} \to \mathbb{R}$,
- policy functions $(w, \eta) : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \times \{0, 1\}.$

Equilibrium

These functions satisfy the following conditions:

- 1. value functions are given by U, E, V, J;
- 2. policy functions are optimal solutions to the equations above;
- 3. V(y) = 0 for all y and $\lambda = \Lambda$.

PLANNER'S SOLUTION

$$rS(x,y) = f(x,y) - c_y(y) + \gamma \int \left[\max\{S(x',y'), U(x')\} - S(x,y) \right] dG(x',y'|x,y) \\ + \max_{\lambda,\theta,\tilde{y}} \left\{ \varphi_e \lambda m(\theta) \left[S(x,\tilde{y}) - S(x,y) \right] - c_\lambda(\lambda) - k\lambda\theta \right\}$$

$$rU(x) = b(x) + \max_{\lambda,\theta,\tilde{y}} \{\varphi_u \lambda m(\theta) [S(x,\tilde{y}) - U(x)] - c_\lambda(\lambda) - k\lambda\theta\}$$

where S(x, y) = E(x, y) + J(x, y), as well as the flow equations

EQUILIBRIUM SOLUTION

PROPOSITION

In any BRE, there exist U(x) and S(x, y) where the policy functions λ, θ, μ are optimal solutions.

- This requires P(x, y) = J(x, y)
- There is an externality from OJS effort
- Equilibrium is efficient only if firms take this into account in the contract they offer

Equilibrium Solution: FOC

Employed Worker

$$\lambda: \varphi_{e}m(\theta) [S(x,\tilde{y}) - S(x,y)] = c_{\lambda}' + k\theta$$

$$\tilde{\theta}: \varphi_{e}m'(\theta) [S(x,\tilde{y}) - S(x,y)] = k$$

$$\tilde{y}: \varphi_{e}\lambda m(\theta) \frac{\partial S(x,\tilde{y})}{\partial \tilde{y}} = 0$$

Unemployed Worker:

$$\lambda : \varphi_u m(\theta) [S(x, \tilde{y}) - U(x)] = c'_{\lambda} + k\theta$$

$$\tilde{\theta} : \varphi_u m'(\theta) [S(x, \tilde{y}) - U(x)] = k$$

$$\tilde{y} : \varphi_u \lambda m(\theta) \frac{\partial S(x, \tilde{y})}{\partial \tilde{y}} = 0$$

 $\lambda, ilde{ heta}$ only depends on $\Delta = S(x, ilde{y}) - S(x,y)$ or $S(x, ilde{y}) - U(x)$

WAGES

Different wage contracts are consistent with BRE. For example:

- 1. Zero Penalty Contract (P = 0)
- 2. Constant Share of Surplus Contract
- 3. Constant Wage Contract

WAGE CONTRACTS

Free entry implies all contracts satisfy: $J(x, \mu(x)) = \frac{k}{q}$

1. ZERO PENALTY CONTRACT: "Sell Job to Worker"

$$P(x, y) = 0 \Rightarrow J(x, y) = 0 \rightarrow E(x, y) = S(x, y). \text{ The wage:}$$

$$w(x, y) = rS(x, y) - \gamma \int \left[\eta S(x', y') + (1 - \eta)U(x') - S(x, y)\right] dG(x', y'|x, y)$$

$$- \max_{\tilde{y}, \tilde{\theta}, \Lambda, \lambda} \left\{\varphi_e \lambda m\left(\frac{\tilde{\theta}}{\Lambda}\right) \left[S(x, \tilde{y}) - \frac{k}{q} - S(x, y)\right] - c_\lambda(\lambda)\right\}.$$

and the initial wage upon newly matching is:

$$w(x,\mu(x)) = rS(x,\mu(x)) - \frac{k}{q}$$
$$-\gamma \int \left[\eta S(x',y') + (1-\eta)U(x') - S(x,y)\right] dG(x',y'|x,\mu(x))$$

WAGE CONTRACTS

2. Constant Share of Surplus Contract. Share $\beta(x)$:

Ε

$$(1-eta(x))[S(x,\mu(x))-U(x)]=rac{k}{q} \ \Rightarrow \ eta(x)=1-rac{k}{q[S(x,\mu(x))-U(x)]},$$

$$\begin{aligned} (x',y) &= U(x') + \beta(x) [S(x',y) - U(x')] \\ &= U(x') + \left(1 - \frac{k}{q[S(x,\mu(x)) - U(x)]}\right) [S(x',y) - U(x')] \end{aligned}$$

and we can substitute *E* into the wage equation. The optimal penalty equals value of job loss: P(x', y) = J(x', y):

$$P(x', y) = (1 - \beta(x))[S(x', y) - U(x')]$$

WAGE CONTRACTS

3. CONSTANT WAGE CONTRACT. Invariant wage w until the worker leaves:

$$rJ(x,\mu(x)) = f(x,y) - c_y(y) - w + \gamma \int \left[\eta J(x',y') - J(x,y)\right] dG(x',y'|x,\mu(x)) dG(x',y'|x)) dG(x',y'|x,\mu(x)) dG(x',y'|x,\mu(x)) dG(x',y'|x,\mu($$

Need to solve numerically to determine J(x', y).

Assumption (1)

The shocks are independent of y : G(x', y'|x).

•
$$\frac{\partial S(x,\tilde{y})}{\partial \tilde{y}} = 0$$
 is equivalent to $f_y(x,\tilde{y}) - c'_y(\tilde{y}) = 0$

 \Rightarrow optimal \tilde{y} in $S(x, \tilde{y})$ will be exclusively determined by $f_x(x, y) = c'_y(y)$

 $\Rightarrow \tilde{y} = \mu(x, \xi)$ independent of state ξ (firm y or unemployment), and only depends on the worker type x.

PROPOSITION

Under Assumption 1, the BRE is unique: there exists a unique pair of (S(x, y), U(x)) satisfying the equilibrium value functions

Assumption (2)

(i) c_y is an increasing, convex function: $c'_y > 0$ and $c''_y \ge 0$; (ii) f is increasing and concave in each element: $f_x > 0$, $f_y > 0$, $f_{xx} < 0$ and $f_{yy} < 0$.

PROPOSITION

Under Assumptions 1 and 2, there is positive assortative matching $(\mu'(x) \ge 0)$ if and only if f(x, y) is supermodular

Assumption (2)

(i) c_y is an increasing, convex function: $c'_y > 0$ and $c''_y \ge 0$; (ii) f is increasing and concave in each element: $f_x > 0$, $f_y > 0$, $f_{xx} < 0$ and $f_{yy} < 0$.

PROPOSITION

Under Assumptions 1 and 2, there is positive assortative matching $(\mu'(x) \ge 0)$ if and only if f(x, y) is supermodular

PROPOSITION

Under Assumptions 1 and 2, there exist $\overline{y}(x) \ge \underline{y}(x) \ge 0$ such that $y \in \mathcal{M}(x)$ if and only if $y \in [\underline{y}(x), \overline{y}(x)]$.

FUNCTIONAL FORM ASSUMPTIONS

Production technology

$$f(x,y) - c_y(y) = \omega \left(x^{\beta} y^{1-\beta} - (1-\beta)y \right) + (1-\omega)\beta x$$

- Matching function: $m(\theta) = \varphi \theta^{\alpha}$
- Type distribution $x \sim \mathcal{N}(\underline{x}, 0.125)$ truncated $x \in [\underline{x}, 1]$
- Normal shocks $y \sim \mathcal{N}(x, \sigma)$, truncated $y \in [0, 2]$
- Unemployment benefit: b(x) = bx
- Search cost: $c_{\lambda} = c \frac{1}{2} \lambda^2$

QUANTITATIVE EXERCISE

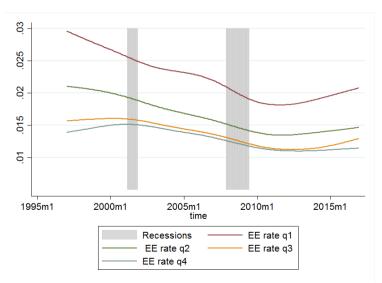
- Partition flows by earnings quartile $q_i, i \in \{1, 2, 3, 4\}$
- Match 12 moments: UE_{q_i} , EE_{q_i} , EU_{q_i} ($u = \frac{EU}{UE + EU}$ endog.)
- Data moment is trend
- Separately estimate 2 steady state economies:

January 1997 and December 2016

• GMM (simulated annealing for global max)

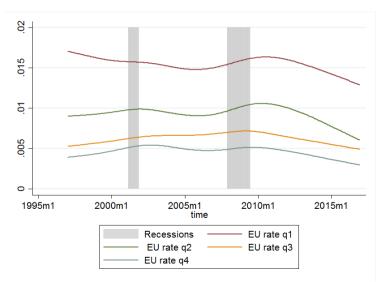
$\operatorname{CPS}\,\operatorname{Data}$

 \mathbf{EE}



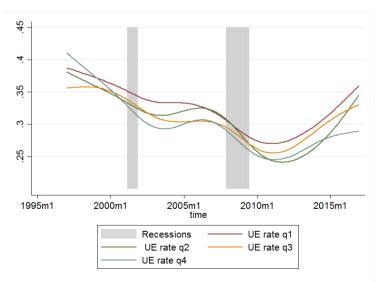
$\operatorname{CPS}\,\operatorname{Data}$

 EU



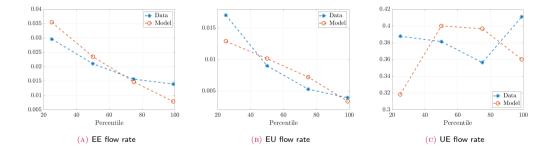
$\operatorname{CPS}\,\operatorname{Data}$

UE



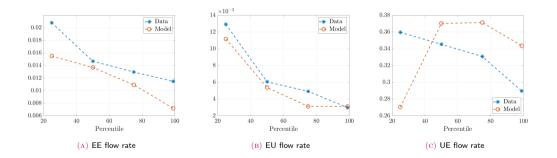
Model Fit

1997



Model Fit

2016



ESTIMATED PARAMETERS

		1997	2016	%Δ
ω	Complementarity	5.95	7.73	29.92
β_0	Worker share intercept	0.38	0.61	58.77
β_1	Worker share slope	0.18	0.37	107.76
σ_0	shock var. intercept	0.61	0.17	-72.05
σ_1	shock var. slope	0.63	0.27	-57.41
γ_0	shock freq. intercept	0.10	0.04	-56.76
γ_1	shock freq. slope	0.71	0.34	-51.90
φ_{0}	match eff. intercept	15.67	11.85	-24.40
φ_1	match eff. slope	0.33	0.25	-23.62
с	search cost	7.74	11.36	46.64
kk	entry cost	17.62	6.40	-63.66

ESTIMATED PARAMETERS

- increase in complementarity
- lower variance and frequency of shocks
- increase in cost of search

ACCEPTANCE REGION

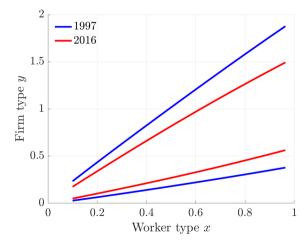
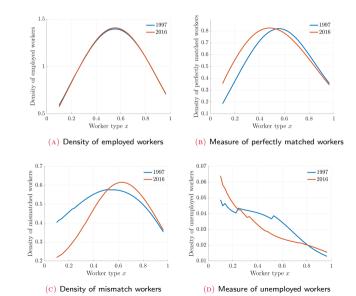
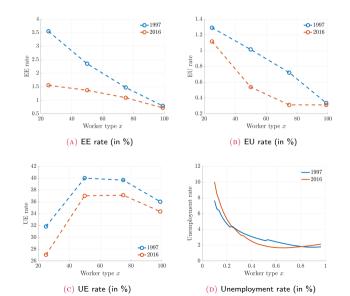


FIGURE: Acceptance Region

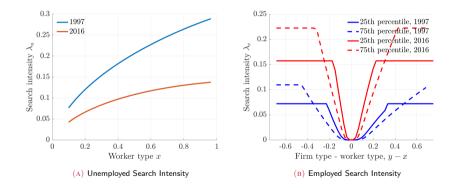
DISTRIBUTION OF WORKERS



FLOWS AND UNEMPLOYMENT RATE



SEARCH INTENSITY



CONCLUSION

- Propose a theory of sorting:
 - mismatch shocks \Rightarrow directed search with search intensity
 - endogenous UE, EE, EU flows (extensive and intensive margin)
 - higher mismatch \Rightarrow higher search intensity (or separation)
- Quantitative illustration: decline in dynamism driven by
 - increase in complementarity
 - lower variance and frequency of shocks
 - increase in cost of search

The Technological Origins of the Decline in Labor Market Dynamism

Jan Eeckhout¹ Xi Weng²

¹UPF Barcelona ²Beijing University

Fed St. Louis-JEDC-SCG-SNB-Conference October 14, 2023

This research is supported by ERC Advanced grant 882499

NOTATION

x	x type of the worker	
У		
$ ilde{ heta}$ market tightness		
λ	λ search intensity	
Λ	Λ aggregate search intensity	
δ	δ death rate	
ρ	ho discount rate	
$r = \delta + \rho$	$= \delta + ho$ effective discount rate	
f(x, y)	f(x, y) output function	
$c_y(y)$	$c_{y}(y)$ operation cost	
$c_{\lambda}(\lambda)$	$c_{\lambda}(\lambda)$ search cost	
k		
$m\left(\frac{\tilde{ heta}}{\Lambda}\right)$	$m\left(\frac{\tilde{ heta}}{h}\right)$ matching function	
U(x)		
E(x, y)	value of an employed worker	
J(x, y)	value of a matched firm	
S(x, y)	S(x, y) value of a firm-worker pair, gross of $U(x)$; $S = E + J$	
V(y) value of vacancy		
G(x', y' x)	(x', y' x) transition distribution function	
$\phi(x, y)$	$\phi(x, y)$ density of mismatched workers	
u(x)	u(x) density of unemployed workers	
$\psi(x)$	density of perfectly matched workers	
v(y)	density of vacant firms	
u(y) density of vacant firms to be matched with unemployed workers		

STEADY STATE FLOW EQUATIONS

$$\begin{aligned} (\gamma + \delta)\psi(x) = \varphi_u \lambda_u m(\theta_u) u(x) + \int \phi(x, y)\varphi_e \lambda_y m(\theta_y) \, dy \\ (\varphi_u \lambda_u m(\theta_u) + \delta)u(x) = \gamma \int \int_{y \notin \mathcal{M}(x)} g(x, y | \tilde{x}, \tilde{y}) dx dy \phi(\tilde{x}, \tilde{y}) d\tilde{x} d\tilde{y} \\ &+ \gamma \int \int_{y \notin \mathcal{M}(x)} g(x, y | \tilde{x}, \mu(\tilde{x})) dx dy \psi(\tilde{x}) d\tilde{x} + \delta f_0(x) \\ (\gamma + \delta + \varphi_e \lambda_y m(\theta_y)) \phi(x, y) = \gamma \int g(x, y | \tilde{x}, \tilde{y}) \phi(\tilde{x}, \tilde{y}) d\tilde{x} d\tilde{y} \\ &+ \gamma \int g(x, y | \tilde{x}, \mu(\tilde{x})) v(\tilde{x}) d\tilde{x}. \end{aligned}$$

return